5.1-5.3 nonlinear ODEs

Wednesday, March 17, 2021 3:56 AM
has no explicit t-dependence
The 5.1 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous and have continuous partial derivatives $\frac{\partial F}{\partial x_{i}}$ for $i \in\{1,2, \ldots, n\}$. Then \nexists a unique solution to the $\operatorname{IVp} \frac{\partial x}{\partial t}=F(x), \quad x\left(t_{0}\right)=x_{0}$ for any initial value $x_{0} \in \mathbb{R}^{n}$. t autonomous system
proof. Existence-Uniqueness The from DiffER.
Define $X(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)^{\top}$ parametrically describes a curve in \mathbb{R}^{n} called the trajectory (or path or orbit) of the system and it has a velocity $\frac{\partial x}{\partial t}$.

Cordate 5.l If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and has n continuous partial derivatue, $\frac{\partial F}{\partial x_{i}}$, then two solutions $X_{1}(t), X_{2}(t)$ satisfying $\frac{\partial x}{\partial t}=F(x)$ that have intersecting initial condituys $X_{1}(0)=X_{0}$ and $X_{2}\left(t_{0}\right)=X_{0}$ must be translations of each other: $\quad X_{2}(t)=X_{1}\left(t-t_{0}\right)$
proof. Let $Y(t)=X_{1}\left(t-t_{0}\right)$ and let $u=t-t_{0}$.
Then $\frac{d Y(t)}{d t}=\frac{d X_{1}(u)}{d w} \cdot \frac{d u}{d t}=\frac{d X,(u)}{d u}$

$$
=F\left(X_{1}(u)\right)=F\left(X_{1}\left(t-t_{0}\right)=F(Y(t))\right.
$$

Additional, $Y\left(t_{0}\right)=X_{1}(0)=X_{0}$, so by existence-uniquenes,

$$
Y(t)=X_{2}(t)
$$

$$
Y(t)=\dot{X}_{2}(t) .
$$

Def. 5.1 An equilibrium solution (or steady state, or fixed pt, or critical $p t$) of the differential system $\dot{X}=F(X)$ is a constant solution satisfying $F(\bar{x})=0$.
Def. 5.2 An equilibrimen solution is locally stable if $\forall \varepsilon>0, \exists \delta>0$ viz set. every sol $X(t)$ of $\dot{X}=F(x)$ with initial condition $X\left(t_{0}\right)=X_{0}$
Def.
2.3

$$
\begin{aligned}
& \left\|x_{0}-\bar{x}\right\|_{2}<\delta, \quad \text { satisfies } \\
& \|x(t)-\bar{x}\|_{2}<\varepsilon \quad \forall t \geq t_{0} .
\end{aligned}
$$

Otherwise, it is unstable.
Def 5.3 An equilibrium is locally asymptotically stable if it is locally state and $\exists \gamma>0$ sot. $\left\|x_{0}-\bar{x}\right\|<y$ impires

$$
\lim _{t \rightarrow \infty}\|x(t)-\bar{x}\|_{2}=0
$$

local assent. stable

Def. 5.4 A periodic solution is a nonconstant solution satisfying $X(t+T)=X(t)$ for all t on the interval of existence for some $T>0$. The nimimum $T>0$ is the period.
Ex. $\quad \frac{d x}{d t}=y \quad \frac{d y}{d t}=x, \quad x(0)=0$ and $y(0)=1$.

$$
\Rightarrow x(t)=\sin (t), y(t)=\cos (t)
$$

Period 2π.
The 5.2 Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Then $\dot{x}=f(x)$ has no periodic solution?
proof. Suppose $x(t)$ is a periodic solution with period $T>0$.

$$
\begin{aligned}
& \begin{aligned}
\frac{d x}{d t}(t) & =f(x) \\
\Rightarrow & \left(\frac{d x(t)}{d t}\right)^{2}
\end{aligned}=f(x) \cdot \frac{d x(t)}{d t} \\
& \Rightarrow \int_{t}^{\int_{t}^{t+T}\left(\frac{d x(s)}{d s}\right)^{2} d s}
\end{aligned}=\underbrace{\int_{t}^{t+T} f(x) \cdot \frac{d x(s)}{d s}}_{t} \cdot d s
$$

\Rightarrow contradiction, so $x(t)$ cant be a periodic solution.
Intuition:

The 5.3 Suppose $f^{\prime}: I \rightarrow \mathbb{R}$ is continuous and $\bar{x} \in I$, where \bar{x} is an equilibrium of $\dot{x}=f(x)$. Then \bar{x} is locally asymptotically stable if $f^{\prime}(\bar{x})<0$ and unstable if $f^{\prime}(\bar{x})>0$.

Def.5.5. \bar{x} is hyperbolic if $f^{\prime}(\bar{x}) \neq 0 \quad f^{\prime}(\bar{x})$ is the eigenvalue of the linearized equation at \bar{x}.

